

Hu-Fu: Efficient and Secure Spatial Queries over Data Federation

Yongxin Tong¹, Xuchen Pan¹, Yuxiang Zeng², Yexuan Shi¹, Chunbo Xue¹, Zimu Zhou³, Xiaofei Zhang⁴, Lei Chen², Yi Xu¹, Ke Xu¹, Weifeng Lv¹

¹Beihang University

²The Hong Kong University of Science and Technology ³Singapore Management University ⁴University of Memphis

Outline

Background

Problem Statement

System Design

Evaluations

Conclusion

Widespread Applications of Spatial Queries

Scaling Spatial Queries to Data Federation

- Example of taxi calling
 - Traditionally: isolated taxi calling platforms

Scaling Spatial Queries to Data Federation

- Example of taxi calling
 - Traditionally: isolated taxi calling platforms
 - Emerging trend: unite multiple taxi calling platforms as a data federation

Scaling Spatial Queries to Data Federation

- Generic settings
 - Multiple mutually distrusted silos
 - Demand security to protect each silo's data

Secure spatial queries over large-scale data federation are non-trivial

Outline

Background

Problem Statement

System Design

Evaluations

Conclusion

- Assumption & Requirement 1:
 - Autonomous databases at individual silos (≥ 2 silos)
 - Heterogenous databases managed independently by each silo
 - Minimal modifications to databases of each silo

- Assumption & Requirement 2:
 - Secure queries against semi-honest adversary model
 - Silos may attempt to infer other silos' data but execute queries honestly

- Assumption & Requirement 3:
 - Efficient execution of mainstream spatial queries
 - Range query, range counting, kNN query, distance join, kNN join, ...

- In a nutshell
 - Autonomous databases at individual silos (≥ 2 silos)
 - Secure queries against semi-honest adversary model
 - Efficient execution of mainstream spatial queries

Existing solutions fail to fulfill all these requirements

Limitations of Existing Solutions

Requirements

- Autonomous databases at individual silos (≥ 2 silos)
- Secure queries against semi-honest adversary model

Efficient execution of mainstream spatial queries

- STOA data federation systems
 - SMCQL [1] & Conclave [2]
 - Limited usability
 - Inefficient for spatial queries

Existing Solutions: Limited Useability

- Cannot adapt to heterogenous databases
 - SMCQL [1] only supports PostgreSQL
- Unfriendly user interface
 - Conclave [2] does not support queries in SQL

Conclave

Existing Solutions: Inefficient for Spatial Queries

- Measurement study
 - Principles of SMCQL [1] & Conclave [2]

Extend to support spatial queries (SMCQL-GIS & Conclave-GIS)

Existing Solutions: Inefficient for Spatial Queries

- Measurement study
 - Principles of SMCQL [1] & Conclave [2]

- Efficiency bottleneck
 - Excessive secure operations
 - Reliance on general-purpose libraries

System	Plaintext	Secure
SMCQL-GIS with ObliVM [3]	0.14%	99.86%
Conclave-GIS with MP-SPDZ [4]	0.10%	99.90%

Percentage of time spent for plaintext or secure operations for a federated kNN query

Outline

Background

Problem Statement

System Design

Evaluations

Conclusion

Our Solution: Hu-Fu

- System for federated spatial queries
- Components
 - Query Rewriter
 - Drivers
 - Query Interface
- Features
 - Efficient & Secure
 - Extensible & User-friendly

Hu-Fu Workflow

Hu-Fu Query Rewriter

Functionalities

Decompose federated spatial queries into multiple basic operators

Techniques

- Define plaintext & secure operators necessary for mainstream federated spatial queries
 - Plaintext operators: range query, range counting
 - Secure operators: summation, comparison, set union
- Novel query decomposition plans with many plaintext operators (within silos) and few secure operators (across silos) w/o compromising security

Inefficient: using O(nklog(nk)) secure distance comparisons

Efficient: using O(log) secure comparisons and 1 secure set union

Hu-Fu Query Rewriter: Decomposition Plans

Decomposition plans for mainstream spatial queries

Fodorated Spatial Quary	Number of Secure Operator			Number of Plaintext Operator	
Federated Spatial Query	Comparison	Summation	Set Union	Range Query	Range Counting
Federated Range Query	0	0	1	n	0
Federated Range Counting	0	1	0	0	n
Federated Distance Join	0	0	1	N R	0
Federated kNN Query	$O(log rac{v_0}{\epsilon_0})$	0	1	n	$O(n \log \frac{v_0}{\epsilon_0})$
Federated kNN Join	$O(R log\frac{v_0}{\epsilon_0})$	0	1	N R	$O(R log\frac{v_0}{\epsilon_0})$

- Secure under semi-honest adversary (proof in full paper [5])
- Possible extensions to other queries (range type, aggregation)

Hu-Fu Drivers

- Functionalities
 - Execute basic operators sent by the query rewriter
- Techniques
 - Implement secure primitives with dedicated secure multi-party computation protocols

Secure summation through secret sharing

Hu-Fu Drivers

Functionalities

Execute basic operators sent by the query rewriter

Techniques

- Implement secure primitives with dedicated secure multi-party computation protocols
- Implement plaintext primitives leveraging spatial database

Hu-Fu Query Interface

- Functionalities
 - Provide federated view to users
 - Support federated spatial queries written in SQL
- Techniques
 - Extend the schema manager and parser of Apache Calcite

```
Hu-Fu> SELECT COUNT(*) cnt FROM osm_a WHERE DWithin(Point(121.5, 14.5), location, 0.5);

+----+
| cnt |
+----+
| 7 |
+----+
1 row selected (0.05 seconds)
```

Outline

Background

Problem Statement

Hu-Fu Overview

Evaluations

Conclusion

Experimental Setups

Dataset

- Multi-company Spatial Data in Beijing
- OpenStreetMap (OSM)

Parameter settings

- # of silos: 2 ~ 10
- # of spatial objects: $10^4 \sim 10^9$
- Spatial database system types:
 - PostGIS, MySQL, SpatiaLite, GeoMesa, Simba [1], SpatialHadoop [2]

Metrics

Running time & Communication cost

Experimental Setups

Baseline

- SMCQL-GIS:
 - Extend SMCQL [1] to support spatial queries
 - Aggregate silos' result with ObliVM [3] (only supports 2 silos)
- Conclave-GIS:
 - Extend Conclave [2] to support spatial queries
 - Aggregate silos' result with MP-SPDZ [4] (supports ≥ 2 silos)
- Public:
 - Aggregate silos' result in plaintext
- All baselines use PostGIS for each silo
- [1] Johes Bater, Gregory Elliott, Craig Eggen, et al. SMCQL: Secure Query Processing for Private Data Networks. PVLDB 2017.
- [2] Nikolaj Volgushev, Malte Schwarzkopf, Ben Getchell, et al. Conclave: secure multi-party computation on big data. EuroSys 2019.
- [3] Chang Liu, Xiao Shaun Wang, Kartik Nayak, et al. ObliVM: A Programming Framework for Secure Computation. S&P 2015.
- [4] Marcel Keller. MP-SPDZ: A Versatile Framework for Multi-Party Computation. CCS 2020.

Main Results

- Running time and communication cost of federated spatial queries
 - Up to 4 orders of magnitude faster
 - Up to 5 orders of magnitude lower communication cost

Main Results

- Scalability
 - Hu-Fu scales well with data size for federated spatial queries

Main Results

- Adapt to heterogeneous spatial databases
 - Hu-Fu functions with silos running heterogeneous databases
 - Performance can be limited by the slowest database in the federation

All silos use PostGIS (Each silo uses a different database system

Background

Problem Statement

Hu-Fu Overview

Evaluations

Conclusion

Conclusion

- Hu-Fu is the first spatial data federation system
 - Design novel decomposition plans for secure and efficient federated spatial queries
 - Support SQL queries across multiple heterogeneous spatial databases
- Extensive experiments validate the efficiency of Hu-Fu

https://github.com/BUAA-BDA/OpenHuFu

Thank You